This presentation includes forward-looking statements about, among other things, Verastem Oncology’s products and product candidates, including anticipated regulatory submissions, approvals, performance and potential benefits of Verastem Oncology products and product candidates, that are subject to substantial risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements. Applicable risks and uncertainties include the risks and uncertainties, among other things, regarding: the satisfaction of closing conditions with respect to the sale of the COPIKTRA assets to Secura Bio; the ability of Secura Bio to achieve the clinical and sales milestones necessary to result in additional consideration payable to Verastem.

Additional information regarding these factors can be found in Verastem Oncology’s Annual Report on Form 10-K for the fiscal year ended December 31, 2019 and in any subsequent filings with the SEC, including in the sections thereof captioned “Risk Factors” and “Forward-Looking Information and Factors that May Affect Future Results,” as well as in our subsequent reports on Form 8-K, all of which are filed with the U.S. Securities and Exchange Commission (SEC) and available at www.sec.gov and www.verastem.com.

The forward-looking statements in this presentation speak only as of the original date of this presentation, and we undertake no obligation to update or revise any of these statements.
We are a biopharmaceutical company committed to developing and commercializing new medicines for patients battling cancer.

Well Positioned to Capitalize on Growth Opportunities

New lead clinical program has best-in-class potential

VS-6766 (RAF/MEK) and defactinib (FAKi) are clinically active against KRAS mutant cancers.

Rapid development paths to market

Validating clinical results achieved in KRAS mutant low-grade serous ovarian cancer (LGSOC), strong signal in KRAS mutant G12V NSCLC; initiating registration-directed trials in 2020.

Significant downstream market opportunity and blockbuster potential

30% of all human cancers are driven by mutations in RAS family of genes; VS-6766 combinations broadly applicable across a variety of tumor types.

Strong balance sheet

Monetization of COPIKTRA® (duvelisib) provides funding until at least 2024.

Proforma Cash Balance of $168.3 million, after Hercules Debt Repayment.

Starting in 2021, annual operating expense forecast $50 million.
Robust Pipeline Targeting the RAS Pathway and Multiple Growth Opportunities

Combinations

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Phase 1/1B</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME study in LGSOC<sup>1,2</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME study in NSCLC<sup>1</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME study in CRC<sup>1</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME study in KRAS-G12V NSCLC<sup>1</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME study in pancreatic<sup>1</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME study in KRASm endometrial cancer<sup>1,2</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration-directed study in LGSOC with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration-directed study in recurrent KRASm NSCLC with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uveal melanoma<sup>1</sup> with defactinib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRASm lung<sup>1</sup> VS-6766 + everolimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In combination with PD-1 inhibitors

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Defactinib + pembrolizumab + gemcitabine</th>
<th>Defactinib + pembrolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/R pancreatic ductal adenocarcinoma<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLC, pancreatic, mesothelioma<sup>1</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Investigator-sponsored trial
² NCT03875820
Updated Phase 1/2 FRAME Study Data in Low-Grade Serous Ovarian Cancer
RAF/MEK Inhibitor VS-6766 in Gynecological Malignancies

<table>
<thead>
<tr>
<th></th>
<th>PHASE 1 / 1B</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
<th>MARKET</th>
</tr>
</thead>
</table>
| FRAME study in LGSOC\(^1,\(^2\)
VS-6766 + defactinib | | | | |
| FRAME study in KRASm endometrial cancer\(^1,\(^2\)
VS-6766 + defactinib | | | | |
| Registration-directed study in LGSOC
VS-6766 + defactinib | | | Registration-directed study to commence by the end of 2020 | |

\(^1\) Investigator-sponsored trial
\(^2\) NCT03875820
What is Low-Grade Serous Ovarian Cancer (LGSOC)?

- **LGSOC** is a type of ovarian cancer that disproportionately affects younger women.

- 1,000 to 2,000 patients in the U.S. and 15,000 to 30,000 worldwide diagnosed with LGSOC each year.

- A slow growing cancer, that has a median survival of almost 10 years, so patients remain in treatment for a long time.

- Patients often experience significant pain and suffering from their disease over time.

- Most prior research has focused on high grade serous ovarian cancer (HGSOC). However, LGSOC is clinically, histologically and molecularly unique from HGSOC with limited treatments available.

Favorable Tolerability Profile for Novel Intermittent Dosing Regimen of VS-6766 plus Defactinib

<table>
<thead>
<tr>
<th>Daily at MTD</th>
<th>4mg twice weekly</th>
<th>RP2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=6 28-day cycle</td>
<td>N=26 28-day cycle</td>
<td>(VS-6766 3.2mg twice weekly + defactinib 200mg twice daily) N=26 21 days of 28-day cycle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Grade ≥3</th>
<th>Grade ≥3</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash related</td>
<td>3 (50%)</td>
<td>5 (19%)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>CK elevation</td>
<td>1 (17%)</td>
<td>2 (8%)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Blurred vision</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>-</td>
<td>1 (4%)</td>
<td>-</td>
</tr>
<tr>
<td>Mucositis</td>
<td>-</td>
<td>1 (4%)</td>
<td>-</td>
</tr>
<tr>
<td>Fatigue</td>
<td>-</td>
<td>1 (4%)</td>
<td>-</td>
</tr>
<tr>
<td>Nausea</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

VS-6766 in Combination with Defactinib Shows Robust ORR with Durability in Refractory LGSOC with Expanded Number of Patients (n=17)

- KRAS-G12 mutations ORR = 56% (5/9); data still maturing
- Current ORR = 41% (7/17); data still maturing
- 5/9 PRs in pts who had previous MEKi
- 9/17 (53%) still on study
- 3 pts on treatment for ~2 yrs or more

Patients came off prior MEKi treatment primarily for progression
Data cutoff date August 17, 2020
VS-6766 in Combination with Defactinib Shows Robust ORR with Durability in Refractory LGSOC at Phase 2 Dose Level

All patients on RP2D: 3.2 mg VS-6766 (2x/wk) + 200 mg Defactinib (BID) q3/4 wks

- ORR in KRAS mt = 50% (3/6); data still maturing
- Current overall ORR = 45% (5/11); data still maturing
- 9/11 (82%) still on study at RP2D¹
- 2 pts on treatment for 2.5 yrs

¹ Data cutoff date August 17, 2020
KRAS Mutated (mt) and Wild Type (wt), Phase 2, Recurrent LGSOC Adaptive Design for Potential Accelerated Approval

Selection Phase
- KRAS mt only

Expansion Phase
- Final sample size to be adjusted based on adaptive design

Defactinib+VS-6766
- Defactinib 200 mg PO BID 21/28 days + VS-6766 3.2 mg PO 2x/wk 21/28 days

VS-6766 Mono
- VS-6766 4.0 mg PO 2x/wk 21/28 days

Primary Endpoint ORR
- Hierarchical evaluation of:
 1. In KRAS mt subjects
 2. All subjects (KRASmt & wt)

FDA Was Supportive of Development Strategy and Adaptive Design

This Registration-directed Phase 2 Study is Expected to Commence by Year End 2020

* Selection Phase – KRAS mt only
** Expansion Phase – final sample size to be adjusted based on adaptive design
Low-Grade Serous Ovarian Cancer

Market Opportunity

Verastem Oncology
LGSOC: Key Drivers Are KRAS/NRAS/BRAF Mutations

Incidence	**10 Yr Prevalence**
Worldwide | ~15,000 – 30,000 | ~80,000
US | ~1,000 – 2,000 | ~6,000

32% of LGSOC Patient Have KRAS Mutations

- Wild-type KRAS includes NRAS and BRAF mutations, among others

Based on LGSOC representing 5-10% of epithelial ovarian cancer
LGSOC: Limited Treatment Options With High Unmet Need

Low-Grade Ovarian Cancer – Treatment Algorithm

- **Stage IA-IB**: Observe only
- **Stage IC**: Pt Chemo Combo: Carbo-Pt + Paclitaxel (preferred) + Beva for Stage II-IV (incl maintenance Beva) OR Hormonal Tx (2B)
- **Stage II-IV**: Recurrence
 - **Pt-Sensitive**:
 - Pt-Chemo combo +/- Beva
 - Trametinib
 - Fulvestrant
 - **Pt-Resistance**:
 - Taxane or gemcitabine, or doxorubicine, or topotecan +/- Beva
 - Trametinib
 - Fulvestrant

Limited Response Rates for Available Treatments:

- Chemotherapy: <10%
- Letrozole: 14%
- Selumetinib: 15%
- Binimetinib: 24%
- Trametinib: 26%

- 31-35% discontinuation rate with MEK inhibitors due to AEs
- No discontinuations in the FRAME study due to AEs

1 NCCN guidelines
Validating Clinical Data in LGSOC
VS-6766 ± Defactinib Represents Best in Class Market Opportunity in LGSOC

Key Takeaways

- KRAS mutations account for 32%\(^1\) of LGSOC cases
- No FDA-approved therapy; limited treatment options
- Unmet medical need creates large market opportunity
- ~6,000 patients living with the disease; ultra-orphan opportunity
- FRAME study: 56% ORR in KRAS-G12m LGSOC and 41% ORR in overall LGSOC represents best-in-class opportunity
- FDA supportive of development strategy and registration trial design

Next Steps

- Commence Phase 2 registration-directed trial by the end of 2020
- Report updated data from FRAME LGSOC cohort in mid-2021

\(^1\) AACR Project Genie, cBioportal
High Unmet Need in Refractory KRASm NSCLC Adenocarcinoma

NSCLC Adenocarcinoma

<table>
<thead>
<tr>
<th>% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

US Annual Incidence: 92K
WW Annual Incidence: 836K

KRAS Mutations Represent 25% of Lung Cancer Adenocarcinoma (EGFR 17%, ALK 7%)4

Advanced or Metastatic NSCL Cancer Recommend Histologic and Molecular Subtyping5

- EGFR/ALK/ROS1/B RAF (targeted)
- Non-targeted PD-(L)1 ≥ 1%
- Non-Targeted PD-(L)1 < 1%

Appropriate targeted agent
- PD-(L)1 single agent or PD-(L)1 + chemo
- Chemo ± PD-(L)1

Recurrence

Prior PD-(L)1
- Chemotherapy
 - Docetaxel
 - Gemcitabine
 - Pemetrexed

No Prior PD-(L)1
- PD-(L)1

Chemotherapy or clinical trials

- SOC in recurrent disease is chemotherapy
- Pre-PD-(L)1 era, chemotherapy response rate ~10% in recurrent disease; 12w PFS of 30–45%

1 Globocan, 2018
2 https://www.ncbi.nlm.nih.gov/books/NBK519578/
3 TCGA PanCancer Atlas (cBioPortal analysis)
4 www.thelancet.com Vol 389 January 21, 2017
5 Adapted from NCCN Non-small cell lung cancer guidelines Version 3.2020
Strong Signal Identified in KRASG12V

to Be Further Validated

VS-6766 ± Defactinib Has a Confirmed 57% ORR in KRASG12V NSCLC in Integrated Analysis

- Preclinical evidence suggests combination with Defactinib may improve efficacy in KRASG12V
- Activity of VS-6766 as a single agent and in combo with Defactinib in KRASG12V
- 1 additional confirmed PR in KRASG12V mutant patient as of Mar-2020

NSCLC Clinical Strategy: KRAS Mutant (mt), Enriched G12V, Phase 2, Recurrent NSCLC for Potential Accelerated Approval

Selection Phase
- Defactinib + VS-6766¹
 - KRAS mt G12V
 - N=16

- VS-6766²
 - KRAS mt G12V
 - N=16

Expansion Phase
- KRAS Mutant – G12V
 - Selected Regimen based on ORR

- KRAS Mutant – non-G12V
 - Exploratory mutation-specific cohort analyses for ORR

This Registration-directed Phase 2 Study is expected to commence November 2020 with an estimated Primary Completion Date for the Expansion Phase of March 2023 (clinicaltrials.gov)

¹ Defactinib 200 mg PO BID (21/28 days) + VS-6766 3.2 mg PO 2x/wk (21/28 days)
² VS-6766 4.0 mg PO 2x/wk (21/28 days)
Continuing to Move VS-6766 Forward Aggressively With Additional Opportunities

NSCLC

- Go-forward strategy is to focus primarily on KRAS G12V patients in NSCLC given clinical signals to-date
- KRAS G12V cohort added to ongoing FRAME study
- Completing Phase 1 investigating VS-6766 in combination with everolimus; plan to advance to Phase 2 in KRASm non-G12V NSCLC
- Reported new preclinical data demonstrating strong synergy and tumor regression with G12C inhibitors in combination with VS-6766 and FAK inhibitor *in vitro* and *in vivo*

Other Tumor Areas

- Expanded FRAME study to include pancreatic and KRASm endometrial patient cohorts to provide early efficacy signals
- Uveal melanoma IST expected to commence by the end of 2020
- VS-6766 enhances efficacy of anti-PD-1 in preclinical models
Other High Priority Lead Indications with Multiple Growth Opportunities

Combinations

<table>
<thead>
<tr>
<th>Indication</th>
<th>Phase Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME study in NSCLC with defactinib</td>
<td>PRECLINICAL</td>
</tr>
<tr>
<td>FRAME study in CRC with defactinib</td>
<td>PHASE 1 / 1B</td>
</tr>
<tr>
<td>FRAME study in KRAS-G12V NSCLC with defactinib</td>
<td>PHASE 2</td>
</tr>
<tr>
<td>FRAME study in pancreatic with defactinib</td>
<td>PHASE 3</td>
</tr>
<tr>
<td>Registration-directed study in recurrent KRASm NSCLC with defactinib</td>
<td>MARKET Registration-directed study to commence by the end of 2020</td>
</tr>
<tr>
<td>Uveal melanoma with defactinib</td>
<td></td>
</tr>
<tr>
<td>KRASm lung VS-6766 + everolimus</td>
<td></td>
</tr>
</tbody>
</table>

In combination with PD-1 inhibitors

<table>
<thead>
<tr>
<th>Indication</th>
<th>Phase Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/R pancreatic ductal adenocarcinoma with Defactinib + pembrolizumab + gemcitabine</td>
<td>PHASE 3</td>
</tr>
<tr>
<td>NSCLC, pancreatic, mesothelioma with Defactinib + pembrolizumab</td>
<td>MARKET</td>
</tr>
</tbody>
</table>

1 Investigator-sponsored study
Selling COPIKTRA® (duvelisib) Rights to Secura Bio

- Total Deal Value Up to $311 Million, Plus Royalties
- Provides Cash Runway Through at Least 2024
- New Verastem Headcount of ~50
- Beginning in 2021 Annual OPEX Expected to be ~$50 Million
- Secura Bio to Assume All Operational and Financial Responsibilities, Including Existing Royalty Obligations
Key Financial Statistics

As of September 30, 2020

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash, cash equivalents & short-term investments as of 9/30/2020</td>
<td>$205.7M</td>
</tr>
<tr>
<td>Shares fully diluted as of 9/30/2020</td>
<td>190.2M</td>
</tr>
<tr>
<td>Hercules Term Loan Facility as of 9/30/2020</td>
<td>$35.0M</td>
</tr>
<tr>
<td>5.00% Convertible Senior Notes Due 2048 (2018 Notes) as of 9/30/2020</td>
<td>$28.3M</td>
</tr>
<tr>
<td>Insider ownership (outstanding / vested) as of 9/30/2020</td>
<td>9.2% / 5.0%</td>
</tr>
</tbody>
</table>

Revised to include Hercules Debt Repayment

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proforma Cash after Hercules Repayment as of 11/09/2020</td>
<td>$168.3M</td>
</tr>
<tr>
<td>5.00% Convertible Senior Notes Due 2048 as of 11/09/2020</td>
<td>$28.3M</td>
</tr>
</tbody>
</table>
Key Upcoming Milestones for Remainder of 2020

VS-6766 & Defactinib

- Regulatory path forward in LGSOC and KRAS mutant NSCLC during the 3Q 2020
- Expand Phase 1/2 FRAME study to include new cohorts in pancreatic cancer, KRASm endometrial cancer and KRAS-G12V NSCLC
- Present updated data from the LGSOC cohort of the Phase 1/2 FRAME study in Sept 2020
- Present preclinical findings in combination w/G12C inhibitors in Sept 2020
- Commence registration-directed trial in recurrent LGSOC by year end 2020
- Commence registration-directed trial in recurrent KRASm NSCLC by year end 2020

Corporate

- Monetize COPIKTRA; extend cash runway through at least 2024
- Reduce OPEX for 2021
- Close Secura Bio transaction in 3Q 2020
High Unmet Needs in RAS/RAF/MEK/ERK-Driven Cancers

<table>
<thead>
<tr>
<th>KRAS-mutant Cancers¹</th>
<th>NSCLC Incidence³,⁵: 194K</th>
<th>Pancreatic Incidence⁵: 58K</th>
<th>Uterine Endometrioid Incidence⁴,⁵: 59K</th>
<th>Colorectal Incidence⁵: 105K</th>
<th>Ovarian Incidence⁵: 22K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31%</td>
<td>98%</td>
<td>21%</td>
<td>45%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NRAS-mutant Cancers¹</th>
<th>Melanoma Incidence⁵: 108K</th>
<th>Multiple Myeloma Incidence⁵: 32K</th>
<th>Melanoma Incidence⁵: 108K</th>
<th>Ovarian Incidence⁵: 22K</th>
<th>Papillary Thyroid Incidence⁵,⁶: 42K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28%</td>
<td>20%</td>
<td>60%</td>
<td>35 – 60%</td>
<td>30 – 80%</td>
</tr>
</tbody>
</table>

Breadth of potential opportunity
• 30% of all human cancers are driven by mutations of the RAS family of genes

Established prognostic significance
• Patients with mutations of the RAS family have an overall worse prognosis

Challenges with conventional approaches
• Modest progress; limited number of approved therapies
• Single agent therapies (e.g. MEK inhibitors) associated with resistance
• Tolerable combination regimens with MEK inhibitors have been challenging
• Current RAS inhibitors in development address only a minority of all RAS mutated cancers

Incidence Sources:
³85% of lung cancer is NSCLC (Lu et. al. Cancer Manag Res. 2019); ⁴90% of all uterine cancers are of the endometrial type (ACS); ⁵Cancer Statistics 2020, Siegel et. al. CA Cancer J Clin 2020; ⁶21% of thyroid cancers are of the papillary type (ACS)

References:

VS-6766 is a Unique Small Molecule RAF/MEK Inhibitor

- VS-6766 inhibits both MEK & RAF kinase activities
- MEK inhibitors paradoxically induce MEK phosphorylation (pMEK) by relieving ERK-dependent feedback inhibition of RAF

By inhibiting RAF phosphorylation of MEK, VS-6766 has advantage of not inducing pMEK

- VS-6766 inhibits ERK signaling more completely; may confer enhanced therapeutic activity

More Complete Shutdown of Tumor Growth Requires Addressing Multiple Resistance Mechanisms

- BRAF inhibition induces compensatory activation of pFAK\(^1\)
- MEK inhibition induces compensatory activation of pFAK preclinically and clinically\(^2\)
 - Trametinib induced ↑ pFAK (Y397) preclinically in KRAS mt NSCLC cell lines
 - Also observed in patients
 - VS-6766 induced ↑ pFAK (Y397) as a potential resistance mechanism in the majority of patients
 - Combination with defactinib reduced this compensatory pFAK signal
- Upon MEK blockade, ERK feeds back to activate RAF kinase

References: \(^1\) Chen, Mol Cancer Res 2018; \(^2\) Banerji, BTOG Dublin, Jan 23, 2019
VS-6766 Inhibits CRAF - The key driver of KRAS-G12V mutant NSCLC

A Precision Approach to KRAS-G12V Driven NSCLC

- KRAS\(^{G12V}\) signals mainly through RAF/MEK in contrast to other variants, such as KRAS-G12D, which signal more through PI3K/AKT
- KRAS\(^{G12V}\) models are especially dependent on CRAF

CRAF, but not BRAF, ablation improves survival of mice with KRAS\(^{G12V}\) induced lung cancer in vivo

Preclinical synergy of VS-6766 + G12C inhibitors observed in KRAS G12C mt NSCLC and CRC

Synergy Score (Loewe model)

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Indication</th>
<th>Sensitivity to G12C inhibitors</th>
<th>VS-6766 + AMG 510</th>
<th>VS-6766 + MRTX849</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2122</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>43.9</td>
<td>46.9</td>
</tr>
<tr>
<td>H358</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>14.5</td>
<td>11.9</td>
</tr>
<tr>
<td>H2030</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>12.1</td>
<td>ND</td>
</tr>
<tr>
<td>H1373</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>9.3</td>
<td>9.6</td>
</tr>
<tr>
<td>SW1573</td>
<td>NSCLC</td>
<td>Insensitive</td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td>SW837</td>
<td>CRC</td>
<td>Sensitive</td>
<td>14.9</td>
<td>ND</td>
</tr>
<tr>
<td>SW1463</td>
<td>CRC</td>
<td>Moderately sensitive</td>
<td>11.5</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: not determined

AMG 510 + VS-6766 (H2122 KRAS G12C mt NSCLC)

- Loewe model additivity
- AMG 510 x VS-6766 @ 0.16 μM

Synergy Score of VS-6766 + G12C inhibitor AMG 510 across G12C mutant NSCLC and CRC cell lines

AMG 510 & FAKi potentiate AMG 510 efficacy in KRAS G12C mutant NSCLC in vivo; Tumor regression in all mice with triple combination

Doses Tested
- Trametinib: 0.3 mg/kg QD
- VS-6766: 0.3 mg/kg QD
- FAKi: 50 mg/kg BID
- AMG 510: 30 mg/kg QD

Presented at RAS-Targeted Drug Development Summit (Sept 16, 2020)
FRAME: Focusing on Low Grade Serous Ovarian Cancer

Advanced Solid Cancers
- VS-6766 (V) oral twice wkly x 3 wks every 4 wks
- Defactinib (D) oral BID daily x 3 wks q 4 wks
- 3 cohorts with increasing doses explored

Patient Disposition

<table>
<thead>
<tr>
<th>Dose Escalation</th>
<th>Total</th>
<th>LGSOC</th>
<th>NSCLC</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2mg/200mg</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4.0mg/200mg</td>
<td>6</td>
<td>3(^a)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.2mg/400mg</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biopsy</td>
<td>4.0mg/200mg</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Expansion</td>
<td>4.0mg/200mg</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>29</td>
<td>9(^c)</td>
<td>11(^d)</td>
<td>9(^b)</td>
</tr>
</tbody>
</table>

RP2D dose

Ongoing Dose Expansion cohorts; data not mature

<table>
<thead>
<tr>
<th>Expansion</th>
<th>Goal</th>
<th>LGSOC</th>
<th>NSCLC</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2mg/200mg</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Apr-20</td>
<td>9</td>
<td>4(^e)</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Investigator-initiated Phase 1 / 2 Study

\(^a\) Includes one KRASm mucinous ovarian carcinoma

\(^b\) Non LGSOC or NSCLC phase 1 patients included to determine recommended dose or PD modeling

\(^c\) Response rate data reported for LGSOC at AACR 2020

\(^d\) Response rate data reported for NSCLC at AACR 2020; one patient not evaluable for response, included in time on treatment

\(^e\) Data not disclosed, except for one NSCLC\(^{G12V}\) patient as part of combined analysis

References: Banerji. AACR VM 1, April 27, 2020, CT143; Data on file
Dose Escalation Phase

<table>
<thead>
<tr>
<th>Adverse Event Details</th>
<th>VS-6766 3.2mg Def 200mg Cohort 1 n=3</th>
<th>VS-6766 4mg Def 200mg Cohort 2a n=6</th>
<th>VS-6766 3.2mg Def 400mg Cohort 2b n=3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr1/2</td>
<td>Gr3/4</td>
<td>Gr1/2</td>
<td>Gr3/4</td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>CK Elevation</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>AST Elevation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Visual Disturbance</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>ALT Elevation</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Oral Mucositis^</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Nausea</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Peripheral Edema</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Dose Expansion Phase

<table>
<thead>
<tr>
<th>Adverse Event Details</th>
<th>VS-6766 3.2mg Def 200mg Cohort 1 n=17</th>
<th>VS-6766 4mg Def 200mg Cohort 2a n=17</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr1/2</td>
<td>Gr3/4</td>
<td>Gr1/2</td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>CK Elevation</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AST Elevation</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Visual Disturbance</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>ALT Elevation</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Oral Mucositis^</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Nausea</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Peripheral Edema</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

- Most Adverse Events (AE) were Grade 1/2
 - All changes were reversible
- No DLTs in Cohort 1 or 2a
- DLTs Cohort 2b: Gr 2 rash in 2/3 of patients; MTD not reached
- Due to chronic Grade 2 AEs in patients on treatment > 6 months

References: Banerji, AACR VM 1, April 27, 2020, CT143; Data on file

RP2D

- **VS-6766 3.2 mg** oral twice wkly (3 wks of every 4 wks)
- **Defactinib 200 mg** oral BID (3 wks of every 4 wks)
High Priority Lead Indications with Multiple Growth Opportunities

High Priority Indications Supported by Initial Data
- LGSOC1,2
- KRASG12V NSCLC1,2

Expansion Opportunities
- Pancreatic1,2
- Endometrial1
- Additional G12V & G12D mt cancers1
- Uveal Melanoma2
- BRAF mt melanoma1,2
- BRAF mt colorectal
- BRAF mt prostate2

Other Mutation Opportunities
- GNAQ mutations in uveal melanoma2
- NF1 mutations in melanoma
- MAP3K1 mutations in breast cancer

Other Combinations
- KRASG12C inhibitors
- EGFR inhibitors
- Everolimus2
- Anti-PD-11,2

1 Supported by clinical data
2 Supported by preclinical data
Experienced Senior Management Team

Brian Stuglik
Chief Executive Officer
- Global VP & Chief Marketing Officer – Lilly Oncology
- Founding Member – Proventus Health Solutions

Daniel Paterson
President and Chief Operating Officer
- CEO – The DNA Repair Co. (now On-Q-ity)
- PharMetrics (now IMS), Axion

Cathy Carew
Chief People & Organizational Strategy Officer
- Principal – HR Collaborative
- Ironwood, ActiveBiotics, Dynogen, Tufts Health Plan

Jonathan Pachter, Ph.D.
Chief Scientific Officer
- Head of Cancer Biology – OSI (now Astellas)

Hagop Youssoufian, MSc, M.D.
Head of Medical Strategy
- CMO, BIND Therapeutics, EVP, Progenics
- CMO & EVP, Ziopharm Oncology, SVP, Imclone

Rob Gagnon
Chief Business and Financial Officer
- CFO – Harvard Bioscience, Clean Harbors
- VP of Finance – Biogen Idec