Disclaimers

This presentation includes forward-looking statements about, among other things, Verastem Oncology’s programs and product candidates, including anticipated regulatory submissions, approvals, performance and potential benefits of Verastem Oncology’s product candidates, as well as Verastem Oncology’s potential income under its asset purchase agreement with Secura Bio, Inc. and borrowings under its credit facility, that are subject to substantial risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements. Applicable risks and uncertainties include the risks and uncertainties, among other things, regarding: the success in the development and potential commercialization of our product candidates, including defactinib and other compounds in combination with avutometinib (VS-6766); the occurrence of adverse safety events and/or unexpected concerns that may arise from additional data or analysis or result in unmanageable safety profiles as compared to their levels of efficacy; or our ability to obtain, maintain and enforce patent and other intellectual property protection for our product candidates.

Other risks and uncertainties include those identified under the heading “Risk Factors” in the Company’s Annual Report on Form 10-K for the year ended December 31, 2022, as filed with the Securities and Exchange Commission (SEC) on March 14, 2023, and in any subsequent filings with the SEC, which are available at www.sec.gov and www.verastem.com.

The forward-looking statements in this presentation speak only as of the original date of this presentation, and we undertake no obligation to update or revise any of these statements.

This presentation contains references to our non-GAAP operating expense, a financial measure that is not calculated in accordance with generally accepted accounting principles in the US (“GAAP”). This non-GAAP financial measure excludes certain amounts or expenses from the corresponding financial measures determined in accordance with GAAP. Management believes this non-GAAP information is useful for investors, taken in conjunction with the Company’s GAAP financial statements, because it provides greater transparency and period-over-period comparability with respect to the Company’s operating performance and can enhance investors’ ability to identify operating trends in the Company’s business. Management uses these measures, among other factors, to assess and analyze operational results and trends and to make financial and operational decisions. Non-GAAP information is not prepared under a comprehensive set of accounting rules and should only be used to supplement an understanding of the Company’s operating results as reported under GAAP, not in isolation or as a substitute for, or superior to, financial information prepared and presented in accordance with GAAP. In addition, this non-GAAP financial measure is unlikely to be comparable with non-GAAP information provided by other companies. The determination of the amounts that are excluded from non-GAAP financial measures is a matter of management judgment and depends upon, among other factors, the nature of the underlying expense or income amounts. Reconciliations between these non-GAAP financial measures and the most comparable GAAP financial measures are included in the footnotes to the slides in this presentation on which a non-GAAP number appears.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third party sources and Verastem Oncology’s own internal estimates and research. While Verastem Oncology believes these third party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions.
Verastem Oncology
Well Positioned to Capitalize on Growth Opportunities

<table>
<thead>
<tr>
<th>Lead clinical program has best-in-class potential</th>
<th>Avutometinib (VS-6766; RAF/MEK clamp) and defactinib (FAK inhibitor) are clinically active against RAS pathway-driven cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid development path to market in LGSOC</td>
<td>FDA Breakthrough Therapy Designation: Updated data from Part A of RAMP 201 trial show a confirmed objective response rate of 45% in patients with recurrent low-grade serous ovarian cancer treated with avutometinib and defactinib; target enrollment was achieved in January 2023; timing of accelerated approval filing to be based on data maturity and finalization of confirmatory study plans</td>
</tr>
<tr>
<td>Significant downstream market opportunity and blockbuster potential</td>
<td>30% of all human cancers are driven by mutations in RAS; Avutometinib combinations potentially broadly applicable across a variety of tumor types. Clinical collaborations with Amgen & Mirati evaluating the combinations of avutometinib with sotorasib & adagrasib, respectively, in KRAS G12C NSCLC supported by strong pre-clinical rationale. Multiple clinical studies in progress evaluating avutometinib combinations across RAS pathway-driven cancers</td>
</tr>
<tr>
<td>Patent Update</td>
<td>Recently issued intermittent dosing IP for both avutometinib alone and avutometinib + defactinib extends patent coverage up to 2038 and 2040</td>
</tr>
</tbody>
</table>
| Strong balance sheet | Cash balance of $111.2 million as of March 31, 2023
Up to $150 million of non-dilutive funding available from credit facility
Company ended Q1 2023 with $15.7 million GAAP operating expenses and $17.8 million non-GAAP operating expenses* |

* Q1 2023 GAAP operating expenses - $15.71M plus change in FV of preferred stock tranche liability of $3.43 minus Q1 2023 stock compensation of $1.31M = $17.83M Q1 2023 non-GAAP operating expenses

We are a biopharmaceutical company committed to developing and commercializing new medicines for patients battling cancer.
Key VSTM Achievements & Anticipated Milestones

LGSOC
- **1H2022**
 - RAMP 201 Selection Phase Complete; Initiated enrollment of Expansion Phase
 - RAMP 201 Selection Phase Update
 - Translational data from FRAME LGSOC cohort presented
- **2H2022**
 - RAMP 202 Complete enrollment of Selection Phase
 - Initiate RAMP 203 (avuto + sotorasib) G12C
 - Top-Line Data from RAMP 202 Selection Phase
 - RAMP 203 advanced to final dose level
- **IQ2023**
 - Initiate combo study of avutometinib + pembrolizumab in BRAF mt melanoma *
 - Present updated results of IST avutometinib + everolimus in KRAS mt NSCLC
- **2Q2023**
 - RAMP 203: Determine recommended phase 2 dose
 - Present updated results of IST avutometinib + everolimus in KRAS mt NSCLC
- **2H2023**
 - Initiate confirmatory study of avutometinib + defactinib in recurrent LGSOC

NSCLC
- **1H2022**
 - RAMP 201 Second Interim Update
 - RAMP 201 FDA Meeting - Avuto + defactinib selected as Go-Forward
 - Launch LGSOC patient education campaign
- **2H2022**
 - Top-Line Data from RAMP 202 Selection Phase
 - RAMP 203: Report initial read-out of safety and preliminary efficacy
 - RAMP 204: Initial read-out of safety and recommended dose
- **IQ2023**
 - Initiate confirmatory study of avutometinib + defactinib in recurrent LGSOC

Additional Indications
- **PanCAN Agreement Executed**
- **Initiate combo study of avutometinib + cetuximab in KRAS mt CRC *
- **Initiate RAMP 205 combo avutometinib + gemcitabine/nab-paclitaxel + defactinib in metastatic pancreatic cancer**
- **Present updated results of Part A RAMP 201 (ASCO)**

- *Investigator-sponsored research
- **RAMP 201 update expected to be provided once go-forward treatment regimen determined, timing of which will be driven by data maturity
- - - - Indicate anticipated milestones
Avutometinib is a Differentiated Agent with the Potential to Serve as the Backbone for Combinations Across RAS Pathway-Driven Cancers

- Unique RAF/MEK clamp mechanism of action
- Novel intermittent dosing schedule; convenient oral regimen
- Breakthrough Therapy Designation for combination of avutometinib and defactinib for treatment of recurrent low-grade serous ovarian cancer (LGSOC) after one or more prior lines of therapy including platinum-based chemotherapy
- Potential best-in-class safety & tolerability profile relative to marketed MEK inhibitors, with potential for combinability with agents from multiple target classes
- Promising signals of clinical activity in various RAS pathway-driven cancers, including in patients whose tumors previously progressed on other MEK inhibitors
- Preclinical anti-proliferative activity across multiple MAPK pathway alterations (e.g. KRAS, NRAS, BRAF, NF1 mt) and multiple solid tumor indications
- Strong preclinical combination data with other agents targeting RAS pathway (e.g. KRAS G12C inhibitors) and parallel pathways (e.g. FAK inhibitors)
Strong Scientific Rationale for Avutometinib and FAK Inhibitor Combination
Anti-Tumor Efficacy in KRAS Mutant and Wild-Type LGSOC models

Growth factors Extracellular Matrix

RTK RAS FAK Y397 Integrin SRC defactinib

RhoA ERK AKT YAP Tumor Growth

Feedback Reactivation

References: Banerji, BTOG Dublin, Jan 23, 2019; Banerji, AACR VM 1, April 27, 2020, CT143; Banerji, unpublished; Santin, unpublished
LGSOC Unmet Need & Opportunity

- LGSOC is a less common type of ovarian cancer that is often diagnosed in younger women
 - LGSOC is a unique disease that is distinct from high-grade serous ovarian cancer (HGSOC) in its pathology, protracted clinical course and low response to chemotherapy and thus requires a more tailored therapeutic approach
 - An estimated 1,000-2,000 patients are diagnosed with LGSOC per year in the U.S., with prevalence of ~6,000

- There are currently no approved therapies specifically indicated for recurrent LGSOC
 - Recent clinical trials in recurrent LGSOC showed that standard-of-care chemo and endocrine therapy are relatively ineffective (6-13% ORR).
 - LGSOC has a chemo-resistant nature and optimal treatment has not yet been defined. NCCN guidelines include clinical trials and observation highlighting the lack of approved & effective therapies

- LGSOC is known to be driven by the MAPK (RAS) pathway in ≥70% of patients
- A phase I/II study in the UK (FRAME) evaluated the combination of avutometinib and defactinib
 - Results in recurrent LGSOC showed a 46% confirmed ORR with durable responses and favorable safety/tolerability
- RAMP 201: A registration-directed Phase 2 trial of avutometinib and avutometinib + defactinib in recurrent LGSOC
 - Updated data from ASCO 2023 showed a 45% confirmed ORR in the combination arm with tumor shrinkage in 86% of evaluable patients

➤ Breakthrough Therapy Designation was granted for avutometinib and defactinib in recurrent LGSOC after one or more prior lines of therapy

RAMP 201 (ENGOTov60/GOG3052): Registration-Directed Phase 2 Trial of Avutometinib ± Defactinib in Patients with Recurrent LGSOC

Dosing:
- Avutometinib + Defactinib combo: Avutometinib 3.2 mg PO 2x/wk 21/28 days + Defactinib 200 mg PO BID: 21/28 days;
- Avutometinib monotherapy: Avutometinib 4.0 mg PO 2x/wk 21/28 days

Expansion Phase – Final sample size to be adjusted based on adaptive design

Part A: Selection Phase*
- Avutometinib + Defactinib
 - KRAS mt (n=16)
 - KRAS wt (n=16)

Part B: Expansion Phase**
- Avutometinib + Defactinib
 - KRAS mt (Total n=36)
 - KRAS wt (Total n=36)

Primary Endpoint:
- Objective Response Rate (blinded independent review)

Evaluation of ORR in Combination Arm:
1. In KRAS mt patients
2. All patients (KRAS mt & wt)

Part C: Expansion Phase (Non-randomized)
- Expanded Enrollment +40 pts

Combination Arm:
- Target Enrollment Reached (N=72)
- Expanded Enrollment Ongoing
RAMP 201
ASCO 2023 Update
Updated Data from Part A of RAMP 201

Avutometinib + Defactinib

<table>
<thead>
<tr>
<th></th>
<th>Total (n=29)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, % (n)</td>
<td>45% (13)</td>
<td>95% CI: (26%, 64%)</td>
</tr>
<tr>
<td>KRAS mt</td>
<td>60% (9/15)</td>
<td></td>
</tr>
<tr>
<td>KRAS wt</td>
<td>29% (4/14)</td>
<td></td>
</tr>
<tr>
<td>Tumor shrinkage, % (n)</td>
<td>86% (25)</td>
<td></td>
</tr>
<tr>
<td>Median Time to Response</td>
<td>5.5 months</td>
<td>(range 1.6-14.7 months)</td>
</tr>
<tr>
<td>Relative Dose Intensity</td>
<td>83% ± 20%</td>
<td></td>
</tr>
</tbody>
</table>

- 29 patients were evaluable for efficacy with a minimum follow-up of 12 months and 13 (45%) patients remain on study treatment
- Patients were heavily pretreated with a median of 4 prior systemic regimens (up to 11)
 - 3 out of 4 patients who received prior MEK inhibitors responded to the combination
- Median duration of response and median progression free survival have not been reached
- Safety and tolerability continued to be favorable and consistent with previously reported data
 - The discontinuation rate due to ≥ 1 adverse event was 12% in the combination overall to date (4.9% due to elevated blood CPK)
- Finalizing the design of a randomized confirmatory trial with the FDA, which is planned to begin in the second half of 2023

“These results demonstrate avutometinib in combination with defactinib can deliver high response rates for patients with recurrent LGSOC with a promising safety profile to date. It is particularly encouraging to see extensive tumor shrinkage in women who have had several treatment lines, including prior MEK inhibitors. These latest findings suggest the combination may offer a new treatment option for women with this hard-to-treat cancer, and we are hopeful it will become the new standard of care.” – Dr. Susana Banerjee, MBBS, MA PhD, FRCP, global and lead investigator of the study, Consultant Medical Oncologist at The Royal Marsden NHS Foundation Trust and Team Leader in Women’s Cancers at The Institute of Cancer Research, London

Reference: Banerjee et al., ASCO June 2023
Recent LGSOC Trials with Standard of Care Highlight High Unmet Need in Recurrent LGSOC

<table>
<thead>
<tr>
<th>Trial</th>
<th>Median Number of Prior lines of Therapy</th>
<th>Prior MEK Allowed</th>
<th>Prior Bevacizumab</th>
<th>Therapy</th>
<th>Response Rate ORR</th>
<th>Image Assessment</th>
<th>Median PFS Months (95% CI)</th>
<th>Discontinuation Rate Due to AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOG 281¹</td>
<td>2 (1-10)</td>
<td>No</td>
<td>* Low %</td>
<td>Standard of Care</td>
<td>6% ^</td>
<td>INV</td>
<td>7.2 (5.6-9.9)</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trametinib</td>
<td>26% ^</td>
<td>INV</td>
<td>13.0 (9.9-15.0)</td>
<td>36%</td>
</tr>
<tr>
<td>MILO²</td>
<td>2 (1-8)</td>
<td>No</td>
<td>* Low %</td>
<td>Standard of Care</td>
<td>13%</td>
<td>BICR</td>
<td>10.6 (9.2 to 14.5)</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binimetinib</td>
<td>16%</td>
<td>BICR</td>
<td>9.1 (7.3-11.3)</td>
<td>31%</td>
</tr>
</tbody>
</table>

¹ Study GOG 281 trial Gershenson et al., Lancet 2022
² MILO Study Monk et al., J Clin Oncol 2020.

* Low historical use of bevacizumab during trial conduct. % not reported
MILO: no more than 3 lines of prior chemotherapy

SoC = Standard of Care

GOG 281: (chemotherapy / endocrine therapy)
PLD (liposomal doxorubicin), paclitaxel, topotecan, letrozole or tamoxifen

MILO: (chemotherapy only)
PLD (liposomal doxorubicin), paclitaxel or topotecan

INV = Investigator
BICR = Blinded independent central review
PFS = Progression free survival
CI = confidence interval
Current Trials with Combination of Avutometinib and Defactinib

Consistent Overall Response Rate of ~45%

<table>
<thead>
<tr>
<th>Trial</th>
<th>Median Number of Prior lines of Therapy</th>
<th>Prior MEK Allowed</th>
<th>Prior Bevacizumab</th>
<th>Therapy</th>
<th>Response Rate ORR</th>
<th>Image Assessment</th>
<th>Median PFS Months (95% CI)</th>
<th>Discontinuation Rate Due to AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME¹</td>
<td>3</td>
<td>Yes</td>
<td>12 %</td>
<td>Avutometinib + Defactinib</td>
<td>46%</td>
<td>INV</td>
<td>23 (11 - NR)</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: (26%, 67%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP 201 Part A (ASCO 2023 data)²</td>
<td>4</td>
<td>Yes</td>
<td>65%</td>
<td>Avutometinib + Defactinib</td>
<td>45%</td>
<td>BICR</td>
<td>Not YetReached</td>
<td>10%**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: (26%, 64%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52%*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Banerjee et al., ESMO Sept 2021
² Banerjee et al., ASCO June 2023

Confirmed + Unconfirmed Objectives responses

**12% discontinuation in all combination pts (Part A + B (n=81): 4.9% due to elevated blood CPK)

INV = Investigator
BICR = Blinded independent central review
PFS = Progression free survival
Go Forward Regimen: Combination of Avutometinib and Defactinib
"Initial Data from RAMP 201 Trial Reinforce Findings from FRAME Trial"

RAMP 201 (Part A)
Interim Analysis - Blinded ICR
N=29

FRAME Investigator Assessment
N=24

ASCO 2023 data
RAMP 201: Safety and Tolerability Profile of Avutometinib + Defactinib

No New Safety Signals; Few Discontinuations Due to Adverse Events

Most Common Treatment-Related Adverse Events (>20%) in All Treated Patients

• Majority of adverse events are mild to moderate and manageable/reversible

• Few discontinuations due to adverse events (12.3% in combo due to ≥ 1 TEAE 4.9% due to elevated blood CPK*)
 * No association to date with clinically significant toxicities, including rhabdomyolysis

<table>
<thead>
<tr>
<th>Avutometinib + Defactinib (n=81)</th>
<th>Any Grade</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea, n (%)</td>
<td>50 (61.7)</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea, n (%)</td>
<td>40 (49.4)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Blood CPK increased, n (%)</td>
<td>39 (48.1)</td>
<td>15 (18.5)</td>
</tr>
<tr>
<td>Oedema peripheral, n (%)</td>
<td>34 (42.0)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Vomiting, n (%)</td>
<td>30 (37.0)</td>
<td>0</td>
</tr>
<tr>
<td>Vision blurred, n (%)</td>
<td>29 (35.8)</td>
<td>0</td>
</tr>
<tr>
<td>Dermatitis acneiform, n (%)</td>
<td>28 (34.6)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Fatigue, n (%)</td>
<td>27 (33.3)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Rash, n (%)</td>
<td>25 (30.9)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Dry skin, n (%)</td>
<td>18 (22.2)</td>
<td>0</td>
</tr>
<tr>
<td>Anemia, n (%)</td>
<td>14 (17.3)</td>
<td>3 (3.7)</td>
</tr>
</tbody>
</table>
Plan to File for Accelerated Approval based on Completed RAMP 201 and FRAME Study Results

Update

- Combination of avutometinib with defactinib selected as go forward treatment regimen
- Combination development continues in all recurrent LGSOC, regardless of KRAS status
- Encouraging efficacy results include independently confirmed responses
- No new safety signals; few discontinuations due to adverse events

Next Steps

- Target enrollment for primary analysis (n=72) in combination has been achieved
- Plan to file for accelerated approval based on the totality of the data from the RAMP 201 and FRAME studies
- Continued enrollment in RAMP 201 combination arm only is planned to expand clinical experience in anticipation of initiation of a confirmatory study
- The Company will provide an update after agreement with the FDA on the confirmatory study
- The Company is planning a RAMP 201 presentation at ASCO 2023
Comprehensive approach to establish more complete blockade of RAS pathway & resistance pathways

<table>
<thead>
<tr>
<th>Indication</th>
<th>Incidence/Prevalence</th>
<th>Regimen</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gynecologic Cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGSOC</td>
<td>Prevalence: 6K</td>
<td>Avutometinib + defactinib</td>
<td>Relapsed Refractory molecularly profiled LGSOC</td>
</tr>
<tr>
<td>Gynecologic Basket*</td>
<td>Incidence: 85K</td>
<td>Avutometinib + defactinib</td>
<td>Recurrent RAS Pathway-driven (RAS/RAF/NF1) endometrioid cancer, mucinous ovarian cancer, high-grade serous ovarian cancer or cervical cancer</td>
</tr>
<tr>
<td>NSCLC Adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS G12C</td>
<td>Incidence: 114K</td>
<td>Avutometinib + sotorasib</td>
<td>Recurrent KRAS G12C with prior KRAS G12C inhibitor(i) treatment or KRAS G12Ci naïve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avutometinib + adagrasib</td>
<td>Recurrent KRAS G12C with prior KRAS G12Ci treatment that progressed</td>
</tr>
<tr>
<td>BRAF mt</td>
<td>Incidence: 58K</td>
<td>Avutometinib + defactinib + gemcitabine/nab-paclitaxel</td>
<td>Previously untreated (front-line) metastatic pancreatic ductal adenocarcinoma (PDAC)</td>
</tr>
<tr>
<td>Pancreatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDAC</td>
<td>Incidence: 114K</td>
<td>Avutometinib + defactinib + gemcitabine/nab-paclitaxel</td>
<td>Previously untreated (front-line) metastatic pancreatic ductal adenocarcinoma (PDAC)</td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS mt*</td>
<td>Incidence: 148K</td>
<td>Avutometinib + cetuximab</td>
<td>Recurrent metastatic KRAS mt</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+*</td>
<td>Incidence: 279K</td>
<td>Avutometinib + abemaciclib + fulvestrant</td>
<td>Recurrent ER+/HER2- breast cancer following progression on CDK4/6i + aromatase inhibitor</td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF V600E*</td>
<td>Incidence: 108K</td>
<td>Avutometinib + pembrolizumab</td>
<td>Recurrent BRAF V600E/K or NRAS (Phase 1 only) mutant Melanoma following progression on prior anti-PD1 therapy</td>
</tr>
</tbody>
</table>

1 References: Monk, Randall, Grisham, The Evolving Landscape of Chemotherapy in Newly Diagnosed Advanced Epithelial Ovarian Cancer, Am Soc Clin Oncol Educ Book; 2019; Slomovitz, Gourley, Carey, Malpica, Shih, Huntsman, Fader., Grisham et al, Low-Grade serous ovarian cancer: State of the Science, Gynecol Oncol; 2020; Grisham, Iyer, Low-Grade Serous Ovarian Cancer: Current Treatment Paradigms and Future Directions: Curr Treat Options Oncology; 2018; Globocan 2020; Palkala and Ramalingam JCI Insight 2018); Cancer Statistics 2020, Siegel et. al. CA Cancer J Clin 2020;70:7-30; Cancer Statistics 2020, Siegel et. al. CA Cancer J Clin 2020;70:7-30; ChoibioPortal; 4 Uterine cancer is one of the leading gynecologic neoplastic disorders in the US, of which over 80% are endometrioid adenocarcinomas (EA); 5 Endometroid OC (EnOC) accounts for approximately 10% of all OC, with the majority of cases diagnosed as low grade, early stage disease with excellent clinical; 6 Mucinous ovarian cancer: 3-11% of ovarian cancer (Hada et al., 2021); 7 90% of Ovarian Cancer is Epithelial Ovarian Cancer (https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf) 8 HGSOC the most common type of ovarian cancer, accounting for approximately 75% of epithelial ovarian cancers. (https://ocrahope.org/news/high-grade-serous-carcinoma/#:~:text=High%2Dgrade%20serous%20carcinoma%20is,unless%20another%20type%20is%20specified.)
Broad Development Opportunities Across Multiple RAS/MAPK Pathway-Driven Cancers

High Priority Registration Indication
Registration-Directed Trial Initiated in 4Q20
- LGSOC\(^1,2\) (RAMP 201)-Target enrollment reached

RAS Pathway Dependent Cancers
- Gynecological\(^1,2\)
- NSCLC\(^1,2\)
- Colorectal\(^1,2\)
- Melanoma\(^1,2\)
- Pancreatic\(^2\)
- Thyroid\(^1,2\)

Biomarker Selection
- KRAS mt\(^1,2\)
- BRAF mt (V600 & non-V600)\(^1,2\)
- NRAS mt\(^1,2\)
- CRAF mt/fusions\(^2\)

Key Signal Finding
- Avutometinib + G12Ci in KRAS G12C NSCLC\(^2\) (RAMP 203 - sotorasib) & (RAMP 204 - adagrasib)
- Avutometinib + defactinib in BRAF mt (V600E & non-V600E) NSCLC\(^1,2\) (RAMP 202)
- Avutometinib + defactinib and gemcitabine/nab-paclitaxel in first line pancreatic cancer (RAMP 205)\(^2\)
- Avutometinib + defactinib in RAS/RAF/NF1 mt gynecological cancers\(^1,2\)
- Avutometinib + cetuximab in KRAS mt CRC\(^2\)
- Avutometinib + abemaciclib and fulvestrant in ER+ breast cancer\(^2\)
- Avutometinib + pembrolizumab in BRAFV600E melanoma\(^2\)

Rational Combinations
- KRAS inhibitors\(^2\) (G12Ci & G12Di)
- Anti-EGFR\(^2\)
- Everolimus\(^1,2\)
- CDK4/6 inhibitor\(^2\)
- Anti-PD-1\(^1,2\)
- Chemotherapy\(^2\)

\(^1\) Supported by clinical data

\(^2\) Supported by preclinical data
Robust Clinical Program: Avutometinib in multiple combinations across RAS/MAPK pathway-driven tumors

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>REGIMEN</th>
<th>STUDY NAME</th>
<th>PRECLINICAL</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
<th>CLINICAL COLLABORATION WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGSOC(^1)</td>
<td>Avutometinib + defactinib</td>
<td>RAMP 201</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>Registration-directed trial cohort fully enrolled</td>
<td>IST-FRAME</td>
</tr>
<tr>
<td>R/R LGSOC</td>
<td>Avutometinib + defactinib</td>
<td>IST-FRAME</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynecological Cancers (RAS Pathway-driven)(^2)</td>
<td>Avutometinib + defactinib</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesonephric(^2)</td>
<td>Avutometinib + defactinib</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/R NSCLC (BRAF mt)</td>
<td>Avutometinib + defactinib</td>
<td>RAMP 202</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/R NSCLC (KRAS G12C)</td>
<td>Avutometinib + sotorasib</td>
<td>RAMP 203</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/R NSCLC (KRAS G12C)</td>
<td>Avutometinib + adagrasib</td>
<td>RAMP 204</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Ductal Adenocarcinoma</td>
<td>Avutometinib + gemcitabine/nab-paclitaxel + defactinib</td>
<td>RAMP 205</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/R NSCLC (KRAS mt)</td>
<td>Avutometinib + everolimus (mTORi)</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/R Colorectal Cancer (KRAS mt)</td>
<td>Avutometinib + cetuximab (EGFRi)</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+ Breast Cancer</td>
<td>Avutometinib + abemaciclib + fulvestrant</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF V600E Melanoma(^2)</td>
<td>Avutometinib + pembrolizumab</td>
<td>IST</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) FDA Breakthrough Therapy Designation
\(^2\) Imminent initiation
Key Financial Statistics

As of and for the quarter ended March 31, 2023

<table>
<thead>
<tr>
<th>Cash, cash equivalents & investments</th>
<th>$111.2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAAP Operating Expenses</td>
<td>$15.7M</td>
</tr>
<tr>
<td>Non-GAAP Operating Expenses*</td>
<td>$17.8M</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>16.7M**</td>
</tr>
</tbody>
</table>

Sources of Non-Dilutive Capital

- **Oxford Finance LLC Credit Facility**
 - Up to $150M available in a series of term loans
 - $40M term loans outstanding as of March 2023.
 - Remaining $110M available upon achievement of pre-defined milestones or at lender’s discretion
 - Floating interest rate, subject to a floor and a cap; 5% final payment charge, and loan subject to 1-3% early payment fee
 - Interest only payments through April 2025
 - No financial covenants

- **Secura Bio, Inc. (Secura) Asset Purchase Agreement – COPIKTRA**
 - Regulatory and commercial milestone payments up to $95M
 - Entitled to receive 50% of royalties, milestones, and sublicensee revenue payments made to Secura related to COPIKTRA
 - Low double-digit royalties on annual net sales over $100M in US, EU, and UK

* Q1 2023 GAAP operating expenses - $15.71M plus change in FV of preferred stock tranche liability of $3.43 minus Q1 2023 stock compensation of $1.31M = $17.83M Q1 2023 non-GAAP operating expenses.
**Adjusted for Reverse Split which was effective May 31, 2023. Excludes Series A Preferred (0.8M Shares on as-converted basis) and Series B Preferred (4.2M Shares on as-converted basis).
Avutometinib RAF/MEK Clamp Program Overview
Avutometinib inhibits MEK, BRAF & CRAF by trapping these molecules in inactive complexes.

MEK inhibitors paradoxically induce MEK phosphorylation (pMEK) by relieving ERK-dependent feedback inhibition of RAF.

By inhibiting RAF phosphorylation of MEK, avutometinib has advantage of not inducing pMEK.

Avutometinib inhibits ERK signaling more completely; may confer enhanced therapeutic activity.

References: Ishii et al., Cancer Res, 2013; Lito et al., Cancer Cell, 2014
Avutometinib is a Unique RAF/MEK Clamp which Induces Inactive Complexes of MEK with ARAF, BRAF & CRAF

Contrasting mechanism of action vs. trametinib

Reference: Coma et al., AACR 2022
Avutometinib Inhibits Cell Proliferation Across Multiple RAS/MAPK Pathway Alterations and Multiple Solid Tumor Histologies

<table>
<thead>
<tr>
<th>Indication</th>
<th>MAPK pathway alteration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>KRAS G12C</td>
</tr>
<tr>
<td>Panc</td>
<td>KRAS G12D</td>
</tr>
<tr>
<td>CRC</td>
<td>KRAS G12V</td>
</tr>
<tr>
<td>Melanoma</td>
<td>KRAS G12A</td>
</tr>
<tr>
<td>Endometrial</td>
<td>KRAS G12S</td>
</tr>
<tr>
<td>Bladder</td>
<td>KRAS G13D</td>
</tr>
<tr>
<td></td>
<td>RAF1 mt</td>
</tr>
<tr>
<td></td>
<td>KRAS Q61K</td>
</tr>
<tr>
<td></td>
<td>ERK2 mt</td>
</tr>
<tr>
<td></td>
<td>NRAS mt</td>
</tr>
<tr>
<td></td>
<td>ARAF mt</td>
</tr>
<tr>
<td></td>
<td>ERK2 mt</td>
</tr>
<tr>
<td></td>
<td>Other mt</td>
</tr>
<tr>
<td></td>
<td>BRAF V600E</td>
</tr>
<tr>
<td></td>
<td>BRAF class 2 mt</td>
</tr>
<tr>
<td></td>
<td>NRAS mt</td>
</tr>
<tr>
<td></td>
<td>NF1 mt</td>
</tr>
<tr>
<td></td>
<td>Other mt</td>
</tr>
</tbody>
</table>

Reference: Pachter RAS-Targeted Drug Development Summit 2022; 3D proliferation assay
Optimized Dosing Schedule Defined: Favorable Tolerability Profile with Novel Intermittent Dosing Regimen

Summary of Adverse Events Grade ≥ 3 Occurring in ≥ 5% of patients

<table>
<thead>
<tr>
<th>Treatment Related Adverse Event</th>
<th>Grade ≥3</th>
<th>Grade ≥3</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>3 (50%)</td>
<td>5 (19%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>CK elevation (Creatine phosphokinase)</td>
<td>1 (17%)</td>
<td>2 (8%)</td>
<td>2 (5%)</td>
</tr>
</tbody>
</table>

1 Chenard-Poirier, et al. ASCO 2017
References: Banerji, Q4 2020 report; Data on file
RP2D: recommended phase 2 dosing
Avutometinib Patent Exclusivity

Composition of Matter Feb 2027 + 5 yrs (PTE) = 2032
Method of Making Sept 2032
Dosing Protocol May 2038
Combination w/ Defactinib Sept 2040
Methods of Treating 2041 - 2042 if issued
Combinations 2041 - 2042 if issued
Avutometinib ± Defactinib in Low-Grade Serous Ovarian Cancer
LGSOC is a Unique RAS Pathway-Driven Cancer with a High Unmet Need

- LGSOC is a type of ovarian cancer that disproportionately affects younger women.

- 1,000 to 2,000 patients in the U.S. and 15,000 to 30,000 worldwide diagnosed with LGSOC each year.

- A slow growing cancer; that has a median survival of almost 10 years, so patients remain in treatment for a long time (10-yr prevalence ~80,000 worldwide, ~6,000 US).

- Patients often experience significant pain and suffering from their disease over time.

- Most prior research has focused on high grade serous ovarian cancer (HGSOC). However, LGSOC is clinically, histologically and molecularly unique from HGSOC with limited treatments available.

~30% of LGSOC Patients Have KRAS mt
~70% of LGSOC Shows RAS Pathway-Associated mts

References: AACR Project GENIE Cohort v9.0-public and Verastem unpublished analysis

Low-Grade and High-Grade Serous Ovarian Cancer Are Different Diseases

<table>
<thead>
<tr>
<th>Variable</th>
<th>LGSOC</th>
<th>HGSOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear atypia</td>
<td>Uniform round to oval with little variation</td>
<td>+++ Marked variation</td>
</tr>
<tr>
<td>Mitotic Index</td>
<td><12 mitoses per 10 hpf</td>
<td>>12 mitoses per 10 hpf</td>
</tr>
<tr>
<td>Chromatin and variation in size of nucleus</td>
<td>Little</td>
<td>Marked (nuclear size ratio ≥3)</td>
</tr>
<tr>
<td>Mutation</td>
<td>KRAS ++</td>
<td>P53 +++</td>
</tr>
<tr>
<td></td>
<td>BRAF +</td>
<td>BRCA1/2 +</td>
</tr>
<tr>
<td></td>
<td>ER/PR +++</td>
<td></td>
</tr>
<tr>
<td>Precursor</td>
<td>Serous borderline tumor</td>
<td>Tubal intraepithelial neoplasia</td>
</tr>
</tbody>
</table>

Reference: Malpica et al., Am J. Surg Pathol 2007
Recurrent LGSOC: High Medical Need
No Approved Treatment Options – Limited Benefit from Available Therapies

Recurrent Low-Grade Ovarian Cancer – Treatment Guidelines

No Category 1 recommendations (high-level evidence). Category 2a (lower-level evidence with uniform NCCN consensus) unless otherwise indicated

f: There is no standard sequencing of drugs for recurrent disease. Considerations include prior therapies, disease burden, relative efficacy, and relative toxicity profile.

t: An aromatase inhibitor (i.e., letrozole, anastrozole, exemestane) is preferred if not used previously. Fulvestrant, tamoxifen, or leuprolide acetate is recommended if an aromatase inhibitor was given previously.
Recent LGSOC Trials Highlight High Unmet Need

<table>
<thead>
<tr>
<th>Trial</th>
<th>Number of Prior Systemic Therapies Median (range)</th>
<th>Prior MEK allowed</th>
<th>Prior Bevacizumab</th>
<th>Therapy</th>
<th>Response Rate ORR</th>
<th>Image Assessment</th>
<th>Median PFS Months (95% CI)</th>
<th>Discontinuation Rate due to AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOG 281¹</td>
<td>2 (1-10)</td>
<td>No</td>
<td>* Low %</td>
<td>SoC (n=130)</td>
<td>6% 95% CI: (3%, 12%)</td>
<td>INV</td>
<td>7.2 (5.6-9.9)</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trametinib (n=130)</td>
<td>26% 95% CI: (19%, 35%)</td>
<td>INV</td>
<td>13.0 (9.9-15.0)</td>
<td>36%</td>
</tr>
<tr>
<td>MILO²</td>
<td>2 (1-8)</td>
<td>No</td>
<td>* Low %</td>
<td>SoC (n=101)</td>
<td>13% 95% CI: (7%, 21%)</td>
<td>BICR</td>
<td>10.6 (9.2 - 14.5)</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binimetinib² (n=198)</td>
<td>16% 95% CI: (11%, 22%)</td>
<td>BICR</td>
<td>9.1 (7.3-11.3)</td>
<td>31%</td>
</tr>
</tbody>
</table>

¹ Study GOG 281 trial Gershenson et al., Lancet 2022
² MILO Study Monk et al., J Clin Oncol 2020.

* Low historical use of bevacizumab during trial conduct. % not reported
MILO: no more than 3 lines of prior chemotherapy

Legend:
- SoC = Standard of Care (endocrine / chemotherapy)
- INV = Investigator
- BICR = Blinded independent central review
- PFS = Progression free survival
- CI = confidence interval
- NR = Not reached
FRAME Study: Solid Foundation for the Development of Avutometinib in Combination with Defactinib in Recurrent LGSOC (n=24)

- Overall response rate (ORR) = 46% (11 confirmed PRs/24)
 - KRAS mutant ORR = 64% (7 confirmed PRs/11)
 - KRAS wild-type ORR = 44% (4 confirmed PRs/9)
 - KRAS status undetermined (1 unconfirmed PR/4)
- Response too early to determine for 2 pts on study for ≤5 months
- Median 3 lines of Prior Treatment (Prior MEKi 10 pts, Prior Bev 4 pts)
- Responses in patients previously treated with MEKi
 - 54% (13/24) patients still on treatment
 - 1 patient discontinuing for adverse events as of April 2021
 - Median PFS 23 months (95% CI 10.6-NR) across all LGSOC

Reference: Banerjee et al., ESMO Sept 2021
RAMP 201 (ENGOTov60/GOG3052): Registration-Directed Phase 2 Trial of Avutometinib ± Defactinib in Patients with Recurrent LGSOC

Part A Selection Phase*
- Avutometinib + Defactinib
 - KRAS mt (n=16)
 - KRAS wt (n=16)

Part B Expansion Phase
- Avutometinib + Defactinib
 - KRAS mt
 - (Total n=36) n+20
 - KRAS wt
 - (Total n=36) n+20

Part C Expansion Phase (Non-randomized)
- Avutometinib + Defactinib
 - KRAS mt n+40**
 - KRAS wt

Primary Endpoint:
Objective Response Rate (blinded independent review)
Evaluating ORR in Combination Arm:
1) In KRAS mt patients
2) All patients (KRAS mt & wt)

Combination Arm:
- Target Enrollment Reached (N=72)
- Expanded Enrollment Ongoing

- **Dosing:**
 - Avutometinib + Defactinib combo: Avutometinib 3.2 mg PO 2x/wk 21/28 days + Defactinib 200 mg PO BID: 21/28 days;
 - Avutometinib mono: Avutometinib 4.0 mg PO 2x/wk 21/28 days

- **Expansion Phase – Final sample size to be adjusted based on adaptive design**
RAMP 201
ASCO 2023 Update
Updated Data from Part A of RAMP 201

<table>
<thead>
<tr>
<th>Avutometinib + Defactinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (n=29)</td>
</tr>
</tbody>
</table>
| **ORR, % (n)** | 45% (13) 95% CI: (26%, 64%)
| KRAS mt | 60% (9/15)
| KRAS wt | 29% (4/14)
| **Tumor shrinkage, % (n)**| 86% (25)
| **Median Time to Response**| 5.5 months (range 1.6-14.7 months)
| **Relative Dose Intensity**| 83% ± 20%

- 29 patients were evaluable for efficacy with a minimum follow-up of 12 months and 13 (45%) patients remain on study treatment.
- Patients were heavily pretreated with a median of 4 prior systemic regimens (up to 11).
 - 3 out of 4 patients who received prior MEK inhibitors responded to the combination.
- Median duration of response and median progression free survival have not been reached.
- Safety and tolerability continued to be favorable and consistent with previously reported data.
 - The discontinuation rate due to ≥ 1 adverse event was 12% in the combination overall to date (4.9% due to elevated blood CPK).
- Finalizing the design of a randomized confirmatory trial with the FDA, which is planned to begin in the second half of 2023.

“These results demonstrate avutometinib in combination with defactinib can deliver high response rates for patients with recurrent LGSOC with a promising safety profile to date. It is particularly encouraging to see extensive tumor shrinkage in women who have had several treatment lines, including prior MEK inhibitors. These latest findings suggest the combination may offer a new treatment option for women with this hard-to-treat cancer, and we are hopeful it will become the new standard of care.” –Dr. Susana Banerjee, MBBS, MA PhD, FRCP, global and lead investigator of the study, Consultant Medical Oncologist at The Royal Marsden NHS Foundation Trust and Team Leader in Women’s Cancers at The Institute of Cancer Research, London.
Recent LGSOC Trials with Standard of Care Highlight High Unmet Need in Recurrent LGSOC

<table>
<thead>
<tr>
<th>Trial</th>
<th>Median Number of Prior lines of Therapy</th>
<th>Prior MEK Allowed</th>
<th>Prior Bevacizumab</th>
<th>Therapy</th>
<th>Response Rate ORR</th>
<th>Image Assessment</th>
<th>Median PFS Months (95% CI)</th>
<th>Discontinuation Rate Due to AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOG 281¹</td>
<td>2 (1-10)</td>
<td>No</td>
<td>* Low %</td>
<td>Standard of Care</td>
<td>6% ^</td>
<td>INV</td>
<td>7.2 (5.6-9.9)</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trametinib</td>
<td>26% ^</td>
<td>INV</td>
<td>13.0 (9.9-15.0)</td>
<td>36%</td>
</tr>
<tr>
<td>MILO²</td>
<td>2 (1-8)</td>
<td>No</td>
<td>* Low %</td>
<td>Standard of Care</td>
<td>13%</td>
<td>BICR</td>
<td>10.6 (9.2 to 14.5)</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binimetinib</td>
<td>16%</td>
<td>BICR</td>
<td>9.1 (7.3-11.3)</td>
<td>31%</td>
</tr>
</tbody>
</table>

¹ Study GOG 281 trial Gershenson et al., Lancet 2022
² MILO Study Monk et al., J Clin Oncol 2020.

* Low historical use of bevacizumab during trial conduct. % not reported

MILO: no more than 3 lines of prior chemotherapy

Key Points

- **SoC = Standard of Care**
- **GOG 281**: (chemotherapy / endocrine therapy)
 - PLD (liposomal doxorubicin), paclitaxel, topotecan, letrozole or tamoxifen
- **MILO**: (chemotherapy only)
 - PLD (liposomal doxorubicin), paclitaxel or topotecan

INV = Investigator
BICR = Blinded independent central review
PFS = Progression free survival
CI = confidence interval
Current Trials with Combination of Avutometinib and Defactinib
Consistent Overall Response Rate of ~45%

<table>
<thead>
<tr>
<th>Trial</th>
<th>Median Number of Prior lines of Therapy</th>
<th>Prior MEK Allowed</th>
<th>Prior Bevacizumab</th>
<th>Therapy</th>
<th>Response Rate ORR</th>
<th>Image Assessment</th>
<th>Median PFS Months (95% CI)</th>
<th>Discontinuation Rate Due to AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAME¹</td>
<td>3</td>
<td>Yes</td>
<td>12 %</td>
<td>Avutometinib + Defactinib</td>
<td>46%^</td>
<td>INV</td>
<td>23 (11 - NR)</td>
<td>4%</td>
</tr>
<tr>
<td>RAMP 201 Part A (ASCO 2023 data)²</td>
<td>4</td>
<td>Yes</td>
<td>65 %</td>
<td>Avutometinib + Defactinib</td>
<td>45% 95% CI: (26%, 64%) 52%*</td>
<td>BICR</td>
<td>Not Yet Reached</td>
<td>10%**</td>
</tr>
</tbody>
</table>

¹ Banerjee et al., ESMO Sept 2021
² Banerjee et al., ASCO June 2023

* Confirmed + Unconfirmed Objectives responses
**12% discontinuation in all combination pts (Part A + B (n=81): 4.9% due to elevated blood CPK)

INV = Investigator
BICR = Blinded independent central review
PFS = Progression free survival
RAMP 201 Part A: Heavily Pre-Treated Patient Population

Prior Platinum-Based Chemotherapy, Endocrine Therapy, Bevacizumab in Most Patients; Prior MEK Inhibitor Therapy was Permitted

<table>
<thead>
<tr>
<th></th>
<th>Avutometinib Monotherapy</th>
<th>Avutometinib + Defactinib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KRAS mt (n=16)</td>
<td>KRAS wt (n=17)</td>
</tr>
<tr>
<td>Age (yrs), median (min, max)</td>
<td>58 (27, 72)</td>
<td>48 (27, 74)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (50)</td>
<td>15 (88)</td>
</tr>
<tr>
<td>1</td>
<td>8 (50)</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Number of Prior Systemic Regimens, median (min, max)</td>
<td>4 (1, 10)</td>
<td>3 (1, 9)</td>
</tr>
<tr>
<td>Prior platinum-based chemotherapy, n (%)</td>
<td>15 (94)</td>
<td>17 (100)</td>
</tr>
<tr>
<td>Prior MEK inhibitor therapy, n (%)</td>
<td>5 (31)</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Prior Bevacizumab, n (%)</td>
<td>8 (50)</td>
<td>8 (47)</td>
</tr>
<tr>
<td>Prior Hormonal therapy, n (%)</td>
<td>11 (69)</td>
<td>13 (76)</td>
</tr>
</tbody>
</table>
RAMP 201 Part A: Evaluable Patient Population*
Positive ORR Confirmed by Blinded Independent Central Review (BICR) Support Avutometinib + Defactinib as Go Forward Regimen in LGSOC - Regardless of KRAS Status

<table>
<thead>
<tr>
<th></th>
<th>Avutometinib</th>
<th>Avutometinib + Defactinib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KRAS mt (n=15)</td>
<td>KRAS wt (n=14)</td>
</tr>
<tr>
<td>Confirmed ORR, n (%)</td>
<td>2 (13)</td>
<td>9 (60)</td>
</tr>
<tr>
<td>CR, n (%)</td>
<td>1 (7)</td>
<td>0</td>
</tr>
<tr>
<td>PR, n (%)</td>
<td>1 (7)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>SD, n (%)</td>
<td>12 (80)</td>
<td>13 (81)</td>
</tr>
<tr>
<td>Disease control rate***, n (%)</td>
<td>14 (93)</td>
<td>14 (88)</td>
</tr>
<tr>
<td>PD, n (%)</td>
<td>1 (7)</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Confirmed + unconfirmed ORR, n (%)</td>
<td>2 (13)</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

* Evaluable for Efficacy: At least one blinded imaging assessment in 31 of 33 and 29 of 31 patients enrolled in respective treatment arms

** Includes patient deepened to CR at last assessment; CR not yet confirmed

***Disease control rate (SD + PR + CR) at 8 weeks.

BICR, blinded independent central review; mt, mutant; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; wt, wild type

ASCO 2023 data
Go Forward Regimen: Combination of Avutometinib and Defactinib
High Disease Control Rate + Tumor Reduction in Recurrent LGSOC

Part A (Evaluable for Efficacy *)

- Confirmed ORR: 45%
- Confirmed/Unconfirmed ORR: 52%
- Disease Control Rate (SD+PR): 90%

Patients still on study treatment: 45%
Minimum follow-up: 12 months

RAMP 201 (Part A)

N=29 Evaluable for Efficacy *

* Evaluable for Efficacy: At least one blinded imaging assessment

ASCO 2023 data

- Best Response (% Change From Baseline)
 - KRAS wild-type
 - KRAS mutant
 - Still on Treatment

- Minimum follow-up: 12 months
Go Forward Regimen: Combination of Avutometinib and Defactinib

Initial Data from RAMP 201 Trial Reinforce Findings from FRAME Trial

RAMP 201 (Part A)
Interim Analysis - Blinded ICR
N=29

FRAME
Investigator Assessment
N=24

ASCO 2023 data
RAMP 201: Safety and Tolerability Profile of Avutometinib + Defactinib
No New Safety Signals; Few Discontinuations Due to Adverse Events

Most Common Treatment-Related Adverse Events (>20%) in All Treated Patients

- Majority of adverse events are mild to moderate and manageable/reversible
- Few discontinuations due to adverse events (12.3% in combo due to ≥ 1 TEAE 4.9% due to elevated blood CPK*)
 * No association to date with clinically significant toxicities, including rhabdomyolysis

<table>
<thead>
<tr>
<th></th>
<th>Any Grade</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea, n (%)</td>
<td>50 (61.7)</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea, n (%)</td>
<td>40 (49.4)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Blood CPK increased, n (%)</td>
<td>39 (48.1)</td>
<td>15 (18.5)</td>
</tr>
<tr>
<td>Oedema peripheral, n (%)</td>
<td>34 (42.0)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Vomiting, n (%)</td>
<td>30 (37.0)</td>
<td>0</td>
</tr>
<tr>
<td>Vision blurred, n (%)</td>
<td>29 (35.8)</td>
<td>0</td>
</tr>
<tr>
<td>Dermatitis acniform, n (%)</td>
<td>28 (34.6)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Fatigue, n (%)</td>
<td>27 (33.3)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Rash, n (%)</td>
<td>25 (30.9)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Dry skin, n (%)</td>
<td>18 (22.2)</td>
<td>0</td>
</tr>
<tr>
<td>Anemia, n (%)</td>
<td>14 (17.3)</td>
<td>3 (3.7)</td>
</tr>
</tbody>
</table>

Reference: Banerjee et al., ASCO June 2023; 1 J Clin Oncol 41, 2023 (suppl 16; abstr 5515)
Plan to File for Accelerated Approval based on Completed RAMP 201 and FRAME Study Results

Update

- Combination of avutometinib with defactinib selected as go forward treatment regimen
- Combination development continues in all recurrent LGSOC, regardless of KRAS status
- Encouraging efficacy results include independently confirmed responses
- No new safety signals; few discontinuations due to adverse events

Next Steps

- Target enrollment for primary analysis (n=72) in combination has been achieved
- Plan to file for accelerated approval based on the totality of the data from the RAMP 201 and FRAME studies
- Continued enrollment in RAMP 201 combination arm only is planned to expand clinical experience in anticipation of initiation of a confirmatory study
- The Company will provide an update after agreement with the FDA on the confirmatory study
- The Company is planning a RAMP 201 presentation at ASCO 2023
RAMP 201 Part A Interim Data Support Meaningful Market Potential for All Recurrent LGSOC Regardless of KRAS Status with Long Duration of Therapy

Prevalence

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>US Patients</th>
<th>Worldwide Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS wild type</td>
<td>~6K</td>
<td>~80K</td>
</tr>
<tr>
<td>KRAS mutation</td>
<td>~4K</td>
<td></td>
</tr>
<tr>
<td>Endometrioid Cancer</td>
<td>~2K</td>
<td></td>
</tr>
</tbody>
</table>

Patient-months of Therapy Per Year

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Patient-months</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC KRAS G12C</td>
<td>~60K</td>
</tr>
<tr>
<td>Pancreatic Cancer</td>
<td>~20K</td>
</tr>
<tr>
<td>LGSOC</td>
<td>~4K</td>
</tr>
<tr>
<td>Endometrioid Cancer</td>
<td>~2K</td>
</tr>
<tr>
<td>Metastatic uveal melanoma</td>
<td>~1K</td>
</tr>
</tbody>
</table>

References

2. Patient-months of Therapy metric calculated by multiplying relevant incidence/prevalence rate times estimated duration of therapy; represents US market opportunity only; patient population estimates from Globocan 2020, American Cancer Society 2021, AACR Genie Cohort V9.0 public, and scientific publications. Duration of therapy estimates from clinical studies and clinician experience. Patient-months on therapy is for 2nd-line+ patients

3. NSCLC KRAS G12C 2nd line patients (incidence); Pancreatic RAS/RAF mutant 2nd-line patients (incidence); LGSOC KRAS mutant and wild-type patients (prevalence); Endometrioid RAS/RAF mutant 2nd-line patients (incidence); Uveal melanoma RAS/RAF mutant 2nd-line patients (incidence)
RAS Pathway-Driven Cancers and Rational Avutometinib Combinations
High Unmet Needs in Additional RAS/MAPK Pathway-Driven Cancers

<table>
<thead>
<tr>
<th>Cancers</th>
<th>KRAS-mutant</th>
<th>NSCLC Incidence(^1): 114K</th>
<th>Pancreatic Incidence(^2): 58K</th>
<th>Uterine Endometrioid Incidence(^3): 59K</th>
<th>Colorectal Incidence(^5): 148K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>31%</td>
<td>98%</td>
<td>21%</td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cancers</th>
<th>NRAS-mutant</th>
<th>Melanoma Incidence(^2): 108K</th>
<th>Multiple Myeloma Incidence(^3): 32K</th>
<th>Colorectal Incidence(^6): 148K</th>
<th>Papillary Thyroid Incidence(^7): 42K</th>
<th>NSCLC Incidence(^7): 194K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>28%</td>
<td>20%</td>
<td>20%</td>
<td>30% – 80%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

Breadth of potential opportunity
- 30% of all human cancers are driven by mutations of the RAS family of genes\(^6\)

Established prognostic significance
- Patients with mutations of the RAS family have an overall worse prognosis

Challenges with conventional approaches
- Modest progress; limited number of approved therapies
- Single agent therapies (e.g., MEK inhibitors) associated with resistance
- Tolerable combination regimens with MEK inhibitors have been challenging
- Approved RAS inhibitors address only a minority of all RAS mutated cancers (KRAS G12C)

Incidence References:
\(^3\)50% of NSCLC is adenocarcinoma (Pakkala and Ramalingam *JCI Insight* 2018); \(^4\)90% of all uterine cancers are of the endometrial type (ACS); \(^5\)Cancer Statistics 2020, Siegel et al. *CA Cancer J Clin* 2020;100:7-30; \(^6\)out of 10 thyroid cancers are of the papillary type (ACS); \(^7\)CbioPortal

References:
Vertical Blockade: Establishing Avutometinib as the Backbone of Therapy for RAS/MAPK Pathway-Driven Tumors

- **Current Challenges**
 - Blocking any single target in the pathway is insufficient for maximum depth and duration of anti-tumor efficacy
 - e.g. SHP2i, KRAS-G12Ci, KRAS-G12Di, RAFi, MEKi, ERKi
 - Vertical blockade concept is now well established
 - Necessary to block more than 1 target in the pathway
 - Many of these agents (e.g. SHP2i, MEKi) have poor tolerability as monotherapy and in combination

- **Solutions offered by Avutometinib**
 - Vertical blockade (RAF and MEK blockade) in a single drug
 - Potential best-in-class tolerability with recommended twice weekly dosing regimen
 - Should enable tolerable combinations
 - Compelling synergy data (preclinical) for avutometinib combinations (e.g. with KRAS G12C inhibitors) supporting clinical combinations
 - Ongoing clinical combination studies with G12Ci (sotorasib, adagrasib), anti-EGFR (cetuximab)

References: 1 Chen, Mol Cancer Res 2018; 2 Banerji, BTOG Dublin, Jan 23, 2019
Parallel Pathway Inhibition: Establishing Avutometinib as the Backbone of Therapy for RAS/MAPK Pathway-Driven Tumors

- **Current Challenges**
 - Blocking RAS pathway can be circumvented through parallel pathways
 - e.g. PI3K/AKT/mTOR, FAK, RhoA, YAP
 - Combinations of MEKi + AKTi have shown poor tolerability

- **Solutions offered with Avutometinib**
 - Promising tolerability and early clinical data with twice weekly avutometinib opens up intermittent dosing options for combinations
 - Compelling preclinical synergy data with avutometinib in combination with several key anti-cancer agents (e.g. FAKi, mTORi)
 - RP2D established for avutometinib + FAKi (defactinib) and for avutometinib + mTORi (everolimus) with twice weekly regimen

References: 1 Chen, Mol Cancer Res 2018; 2 Banerji, BTOG Dublin, Jan 23, 2019
Preclinical Synergy of Avutometinib in Combination with Promising Agents for Clinical Investigation

Vertically Inhibiting RAS/MapK Pathway

- **Avutometinib + pan-HERi (afatinib)**
- **Avutometinib + SHP2i (RMC-4550)**
- **Avutometinib + SOS1i (BI-3406)**

Parallelly Inhibiting RAS/MapK Pathway

- **Avutometinib + CDK4/6i (palbociclib)**
Avutometinib Combinations in Non-Small Cell Lung Cancer
High Unmet Need in Refractory KRAS & BRAF mt NSCLC Adenocarcinoma

NSCLC Adenocarcinoma

US Annual Incidence\(^7,8\): 114K
WW Annual Incidence\(^1,2\): 882K

KRAS Mutations Represent 25% of Lung Cancer Adenocarcinoma & BRAF Mutations Represent ~4% (EGFR 17%, ALK 7%)\(^4,6\)

Advanced or Metastatic NSCL Cancer Recommend Histologic and Molecular Subtyping

- **Non-targeted**
 - PD-(L)1 ≥ 1%
 - Chemo ± PD-(L)1
- **Non-Targeted**
 - PD-(L)1 single agent or PD-(L)1 + chemo

Recurrence

- SOC in recurrent disease is chemotherapy
- Pre-PD-(L)1 era, chemotherapy response rate ~10% in recurrent disease; 12w PFS of 30–45%

Chemotherapy or clinical trials

- **PD-(L)1**
 - No Prior PD-(L)1
 - PD-(L)1
- **Prior PD-(L)1**
 - Chemotherapy
 - Docetaxel
 - Gemcitabine
 - Pemetrexed

Verastem Clinical Trials:

- RAMP 203: Avutometinib + sotorasib in KRAS G12C NSCLC
- RAMP 204: Avutometinib + adagrasib in KRAS G12C NSCLC
- RAMP 202: Avutometinib + defactinib in BRAFV600E and non-V600E NSCLC

References:

1. Globocan, 2020
3. TCGA PanCancer Atlas (cBioPortal analysis)
5. Adapted from NCCN Non-small cell lung cancer guidelines Version 3.2020
7. 50% of NSCLC is adenocarcinoma (Pakkala and Ramalingam JCI Insight 2018)
Preclinical Synergy of Avutometinib + G12C Inhibitors in KRAS G12C Models

Synergy of avutometinib + G12C inhibitors across G12C mutant NSCLC, CRC & Pancreatic cancer cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Indication</th>
<th>Sensitivity to G12C inhibitors</th>
<th>Avutometinib + sotorasib</th>
<th>Avutometinib + adagrasib</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2122</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>44.7</td>
<td>44.6</td>
</tr>
<tr>
<td>H1373</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>10.0</td>
<td>3.4</td>
</tr>
<tr>
<td>SW1573</td>
<td>NSCLC</td>
<td>Insensitive</td>
<td>8.6</td>
<td>12.0</td>
</tr>
<tr>
<td>H358</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>6.9</td>
<td>5.4</td>
</tr>
<tr>
<td>H2030</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>5.1</td>
<td>ND</td>
</tr>
<tr>
<td>SW837</td>
<td>CRC</td>
<td>Sensitive</td>
<td>16.1</td>
<td>18.5</td>
</tr>
<tr>
<td>MIAPACA2</td>
<td>Panc</td>
<td>Sensitive</td>
<td>2.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>

ND: not determined

Avutometinib + sotorasib yields deeper and more sustained inhibition of ERK signaling pathway

4h
- - + + - + - +

48h
- - + + - + - +

p-ERK

Total ERK

Actin

Avutometinib & FAKi potentiate sotorasib efficacy in KRAS G12C NSCLC in vivo; Tumor regression in all mice with triple combination

Doses Tested
- Sotorasib: 30 mg/kg PO QD
- Avutometinib: 0.3 mg/kg PO QD
- FAKi: 50 mg/kg PO BID
- Trametinib: 0.3 mg/kg PO QD

H2122 KRAS G12C NSCLC

Concentrations Tested
- Sotorasib: 100 nM
- Avutometinib: 100 nM

Reference: Coma et al., AACR 2021

Verastem Oncology

51
Acquired Resistance Mechanisms to KRAS G12Ci Treatment in Patients
Further Support Combination of KRAS G12Ci with Avutometinib

Summary of Putative Mechanisms of Acquired Resistance to Adagrasib Treatment

- Mechanisms of acquired resistance to KRAS G12Ci adagrasib treatment in patients recently reported¹,²

- The main resistance alterations occurred in
 - RTK mts or amplifications
 - KRAS mts or amplification
 - NRAS mt
 - BRAF V600E, BRAF or CRAF fusions
 - MAP2K1 (MEK1) mt/deletion

- Avutometinib has shown activity against these KRAS, NRAS, BRAF and CRAF modifications

| IC50 (nM) |
|-----------------|-----------------|-----------------|
| **Cell Line** | **Sotorasib** | **Adagrasib** | **Avutometinib** |
| G12C | 29 | 3 | 14 |
| G12D | 435 | 382 | 7 |
| G12C/R68S | 157 | 85 | 13 |
| G12C/H95D | 11 | 235 | 10 |
| G12C/Y96C | 438 | 216 | 4 |

Reference: Andrew Aguirre, unpublished
RAMP 203: Phase 1/2 Trial of Avutometinib + LUMAKRAS™ (Sotorasib) in KRAS G12C Advanced NSCLC

- Patients must have a KRAS G12C mutation determined using validated test
- Treatment with at least 1 but no more than 3 prior systemic regimens, for Stage 3B-C or 4 NSCLC*
- Patient may have previously received adjuvant chemotherapy for earlier-stage disease
- Measurable disease according to RECIST 1.1
- ECOG performance status ≤ 1

*may include patients with or without prior G12C therapy

- Part A: Dose Evaluation (3+3 DLT Assessment)
 - Avutometinib + Sotorasib
 - Dose Finding Cohorts (n=3-6)
 - RP2D Selected*

- Part B: Dose Expansion at RP2D (Primary endpoint ORR)
 - Cohort 1
 - Patients without Prior KRAS G12C Inhibitor Treatment
 - Stage 1: ~20 patients
 - Stage 2: expand
 - Cohort 2
 - Patients who Progressed on KRAS G12C Inhibitor Treatment
 - Stage 1: ~20 patients
 - Stage 2: expand

* Recommended Phase 2 Dose (RP2D): 4mg avutometinib/960mg sotorasib

Completed enrollment

Abbreviations: DLT = dose-limiting toxicity; n = number of patients; ORR = overall response rate; RP2D = recommended phase 2 dose

NCT05074810

Now enrolling expansion phase

Collaboration with Amgen
RAMP 204: Phase 1/2 Trial of Avutometinib + KRAZATI™ (Adagrasib) in KRAS G12C Advanced NSCLC

- Patients must have a KRAS G12C mutation determined using validated test
- Treatment with at least 1 but no more than 3 prior systemic regimens, for Stage 3B-C or 4 NSCLC
- Patient must have received prior therapy with a KRAS G12C inhibitor and experience progressive disease
- Measurable disease according to RECIST 1.1
- ECOG performance status ≤ 1

Part A: Dose Evaluation (3+3 DLT Assessment)

Avutometinib + Adagrasib
Dose Finding Cohorts (n=3-6)

RP2D Selection

Part B: Dose Expansion (Primary endpoint ORR)

Stage 1: 19 patients (including Part A patients) treated with RP2D
Stage 2: expand to 55 patients

NCT05375994

Collaboration with Mirati Therapeutics

Abbreviations: DLT = dose-limiting toxicity; n = number of patients; ORR = overall response rate; RP2D = recommended phase 2 dose
RAMP 202: Phase 2 Trial of Avutometinib + Defactinib in BRAF mt NSCLC

- Patients with Advanced NSCLC
- 1-2 prior regimens
- 1 prior platinum-containing chemo
- Prior CPI unless contraindicated
- Measurable disease (RECIST 1.1)
- Appropriate approved therapy for other relevant mutations
- No prior KRAS-specific targeted therapy
- No prior MEKi, (except for BRAF V600E)
- No untreated CNS metastases
- ECOG OS 0-1

Initial Phase

Avutometinib + Defactinib
BRAF V600E
n=15

Avutometinib + Defactinib
BRAF non-V600E
n=15

Analysis

BRAF Mutant
- Mutation-specific cohort analyses for ORR

Expansion TBD based on results of analysis

References:¹ Avutometinib 3.2 mg PO 2x/wk (21/28 days) + Defactinib 200 mg PO BID (21/28 days)

NCT04620330
Additional Avutometinib Combinations for Pancreatic, Colorectal and Melanoma
Preclinical Synergy of Avutometinib/FAK Inhibition + Chemotherapy in a KRAS/p53 pancreatic cancer mouse model

- The combination of avutometinib + FAKi induces tumor growth inhibition and increases survival but does not induce tumor regression.
- Addition of chemo (gemcitabine + paclitaxel) to avutometinib/FAKi induces tumor regression.

Collaboration with David DeNardo, Washington University; unpublished
Patients with confirmed metastatic pancreatic ductal adenocarcinoma
- Eligible for treatment in the first-line setting with standard gemcitabine and nab-paclitaxel
- Prior adjuvant or neoadjuvant chemotherapy, radiotherapy or surgery is permitted if the last intervention/dose was ≥ 12 months prior to the diagnosis of metastatic disease
- Measurable disease according to RECIST 1.1
- ECOG performance status ≤ 1

Part A: Dose Evaluation
(3+3 DLT Assessment)

Avutometinib + Defactinib + Gemcitabine + Nab-paclitaxel

Dose Finding Cohorts (n=3-6)

RP2D Selection

Part B: Dose Expansion at RP2D
(Primary endpoint ORR)

Patients with PDAC
- KRAS G12D
- KRAS G12V
- KRAS G12R
- Others

Treated with RP2D

Stage 1: 17 patients
If ≥4 responders, then
Stage 2: expand to 29 patients

NCT05669482

Abbreviations: DLT = dose-limiting toxicity; n = number of patients; ORR = overall response rate; RP2D = recommended phase 2 dose
Combination of Avutometinib with anti-EGFR mAb Induces Tumor Regression in a KRAS mt Colorectal PDX Model

- Avutometinib + anti-EGFR (panitumumab) induces tumor regression in a KRAS mutant CRC patient-derived xenograft model
- G12Ci + anti-EGFR (sotorasib + panitumumab and adagrasib + cetuximab) have shown partial responses in KRAS G12C CRC (Fakih et al. ESMO 2021; Weiss et al. ESMO 2021)
- These data support the ongoing clinical evaluation of avutometinib + cetuximab (anti-EGFR) for treatment of KRAS mt CRC (NCT05200442)
Combination of Avutometinib + FAK Inhibition with Checkpoint Inhibitor Induces Tumor Regression in an IO-resistant BRAFV600E melanoma model

- Avutometinib + IO (anti-PD-1 + anti-CTLA-4) induces tumor regression in an IO-resistant syngeneic BRAFV600E melanoma model (YUMM 1.7)
- FAK inhibition deepens and sustains avutometinib-induced tumor regression
- These data support the imminent clinical evaluation of avutometinib + pembrolizumab (anti-PD-1) for treatment of BRAFV600E melanoma

Collaboration with Silvio Gutkind, UCSD; unpublished
Avutometinib Development in Multiple Combinations Across RAS Pathway-Driven Tumors with Potential Early Read-Outs in 2H 2023

<table>
<thead>
<tr>
<th>Indication</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS G12C NSCLC</td>
<td>RAMP 203: Avutometinib/Sotorasib combo</td>
</tr>
<tr>
<td>KRAS G12C NSCLC</td>
<td>RAMP 204: Avutometinib/Adagrasib combo</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>RAMP 205: Avutometinib/Gem/Abraxane/Defactinib combo</td>
</tr>
<tr>
<td>KRAS mt NSCLC</td>
<td>Avutometinib/Everolimus combo*</td>
</tr>
<tr>
<td>KRAS mt CRC</td>
<td>Avutometinib/Cetuximab combo*</td>
</tr>
<tr>
<td>ER+ Breast</td>
<td>Avutometinib/Abemaciclib/fulvestrant combo*</td>
</tr>
<tr>
<td>RAS/RAF/NF1 Gynecological</td>
<td>Avutometinib/Defactinib combo*</td>
</tr>
<tr>
<td>BRAF V600E Melanoma</td>
<td>Avutometinib/Pembrolizumab combo*</td>
</tr>
</tbody>
</table>

*Investigator Sponsored Trials
Experienced Senior Management Team

Brian Stuglik
Chief Executive Officer
- Global VP & Chief Marketing Officer – Lilly Oncology
- Founding Member – Proventus Health Solutions

Daniel Paterson
President and Chief Operating Officer
- CEO – The DNA Repair Co. (now On-Q-ity)
- PharMetrics (now IMS), Axion

Cathy Carew
Chief Organizational Effectiveness Officer
- Principal – HR Collaborative
- Ironwood, ActiveBiotics, Dynogen, Tufts Health Plan

Jonathan Pachter, Ph.D.
Chief Scientific Officer
- Head of Cancer Biology – OSI (now Astellas)
- Schering-Plough

Louis Denis, M.D.
Chief Medical Officer
- CMO, Asana BioSciences
- Boehringer-Ingelheim, Pfizer

Hagop Youssoufian, MSc, M.D.
Head of Medical Strategy
- CMO, BIND Therapeutics, EVP, Progenics,
- CMO & EVP, Ziopharm Oncology, SVP, Imclone
THANK YOU